Empat Teorema/Dalil Berkaitan Dengan Pengajaran Matematika
Saturday, September 24, 2016
Selain mengembangkan teori perkembangan kognitif, Bruner mengemukakan teorema atau dalil-dalil berkaitan pengajaran matematika. Berdasarkan hasil-hasil eksperimen dan observasi yang dilakukan oleh Bruner dan Kenney, pada tahun 1963 kedua pakar tersebut mengemukakan empat teorema/dalil-dalil berkaitan dengan pengajaran matematika yang masing-masing mereka sebut sebagai ”teorema atau dalil”. Keempat dalil tersebut adalah:
1.Dalil Konstruksi/Penyusunan (Contruction Theorem)
Di dalam teorema kontruksi dikatakan bahwa cara yang terbaik bagi seseorang siswa untuk mempelajari sesuatu atau prinsip dalam Matematika adalah dengan mengkontruksi atau melakukan penyusunan sebagai sebuah representasi dari konsep atau prinsip tersebut.
Siswa yang lebih dewasa mungkin bisa memahami sesuatu konsep atau sesuatu prinsip dalam matematika hanya dengan menganalisis sebuah representasi yang disajikan oleh guru mereka; akan tetapi, untuk kebanyakan siswa, khususnya untuk siswa yang lebih muda, proses belajar akan lebih baik atau melekat jika para siswa mengkonstruksi sendiri representasi dari apa yang dipelajari tersebut.
Alasannya, jika para siswa bisa mengkontuksi sendiri representasi tersebut mereka akan lebih mudah menemukan sendiri konsep atau prinsip yang terkandung dalam representasi tersebut, sehingga untuk selanjutnya mereka juga mudah untuk mengingat hal-hal tesebut dan dapat mengaplikasikan dalam situasi-situasi yang sesuai.
Dalam proses perumusan dan mengkonstruks atau penyusunan ide-ide, apabila disertai dengan bantuan benda-benda konkret mereka lebih mudah mengingat ide-ide tersebut. Dengan demikian, anak lebih mudah menerapkan ide dalam situasi nyata secara tepat.
Seperti yang diuraikan pada penjelasan tentang modus-modus representasi, akan lebih baik jika para siswa mula-mula menggunakan representasi kongkret yang memungkinkan siswa untuk aktif, tidak hanya aktif secara intelektual (mental) tetapi juga secara fisik.
Contoh untuk memahami konsep penjumlahan misalnya 5+4=9, siswa bisa melakukan dua langkah berurutan, yaitu 5 kotak dan 4 kotak, cara lain dapat direpresentasikan dengan garis bilangan. Dengan mengulang hal yang sama untuk dua bilangan yang lainnya anak-anak akan memahami konsep penjumlahan dengan pengertian yang mendalam.
Contoh lain, anak mempelajari konsep perkalian yang didasarkan pada prinsip penjumlahan berulang, akan lebih memahami konsep tersebut. Jika anak tersebut mencoba sendiri menggunakan garis bilangan untuk memperlihatkan proses perkalian tersebut. Misalnya 3x5, ini berarti pada garis bilangan meloncat 3x dengan loncatan sejauh 5 satuan, hasil loncatan tersebut kita periksa ternyata hasilnya 15.
Dengan mengulangi hasil percobaan seperti ini, anak akan benar-benar memahami dengan pengertian yang mendalam, bahwa perkalian pada dasarnya merupakan penjumlahan berulang.
2.Dalil Notasi (Notation Theorem)
Menurut apa yang dikatakan dalam terorema notasi, representasi dari sesuatu materi matematika akan lebih mudah dipahami oleh siswa apabila di dalam representasi itu digunakan notasi yang sesuai dengan tingkat perkembangan kognitif siswa.
Sebagai contoh, untuk siswa sekolah dasar, yang pada umumnya masih berada pada tahap operasi kongkret, soal berbunyi; "Tentukanlah sebuah bilangan yang jika ditambah 3 akan menjadi 8", akan lebih sesuai jika direpresentasikan dalam diberikan bentuk $\cdots + 3 = 8$ atau $☆ + 3 = 8$ atau $a + 3 = 8$
Notasi yang diberikan tahap demi tahap ini sifatnya berurutan dari yang paling sederhana sampai yang paling sulit. Penyajian seperti dalam matematika merupakan pendekatan spiral. Dalam pendekatan spiral setiap ide-ide matematika disajikan secara sistimatis dengan menggunakan notasi-notasi yang bertingkat. Pada tahap awal notasi ini sederhana, diikuti dengan notasi berikutnya yang lebih kompleks.
3.Dalil Kekontrasan dan Variasi (Contrast and Variation Theorem)
Di dalam teorema kekontrasan dan variasi dikemukakan bahwa sesuatu konsep Matematika akan lebih mudah dipahami oleh siswa apabila konsep itu dikontraskan dengan konsep-konsep yang lain, sehingga perbedaan antara konsep itu dengan konsep-konsep yang lain menjadi jelas.
Sebagai contoh, pemahaman siswa tentang konsep bilangan prima akan menjadi lebih baik bila bilangan prima dibandingkan dengan bilangan yang bukan prima, menjadi jelas. Demikian pula, pemahaman siswa tentang konsep persegi dalam geometri akan menjadi lebih baik jika konsep persegi dibandingkan dengan konsep-konsep geometri yang lain, misalnya persegipanjang, jajarangenjang, belahketupat, dan lain-lain.
Dengan membandingkan konsep yang satu dengan konsep yang lain, perbedaan dan hubungan (jika ada) antara konsep yang satu dengan konsep yang lain menjadi jelas. Sebagai contoh, dengan membandingkan konsep persegi dengan konsep persegipanjang akan menjadi jelas bahwa persegi merupakan kejadian khusus (a special case) dair persegipanjang, artinya: setiap persegi tentu ,merupakan persegipanjang, sedangkan suatu persegipanjang belum tentu merupakan persegi.
Selain itu di dalam teorema ini juga disebutkan bahwa pemahaman siswa tentang sesuatu konsep matematika juga akan menjadi lebih baik apabila konsepitu dijelaskan dengan menggunakan berbagai contoh yang bervariasi. Misalnya, dalam pembelajaran konsep persegipanjang, persegipanjang sebaiknya ditampilkan dengan berbagai contoh yang bervariasi.
Misalnya ada persegipanjang yang posisinya bervariasi (ada yang dua sisinya behadapan terletak horisontal dan dua sisi yang lain vertikal, ada yang posisinya miring, dan sebagainya), ada persegipanjang yang perbedaan panjang dan lebarnya begitu mencolok, dan ada persegipanjang yang panjang dan lebarnya hampir sama, bahkan ada persegipanjang yang panjang dan lebarnya sama.
Dengan digunakannya contoh-contoh yang bervariasi tersebut, sifat-sifat atau ciri-ciri dari persegi panjang akan dapat dipahami dengan baik. Dari ber-bagai contoh tersebut siswa akan bisa memahami bahwa sesuatu konsep bisa direpre-sentasikan dengan bebagai contoh yang spesifik. Sekalipun contoh-contoh yang spesifik tersebut mengandung perbedaan yang satu dengan yang lain, semua contoh (semua kasus) tersebut memiliki ciri-ciri umum yang sama.
4.Dalil Konektivitas atau Pengaitan (Connectivity Theorem)
Di dalam teorema konektivitas disebutkan bahwa setiap konsep, setiap prinsip, dan setiap ketrampilan dalam matematika berhubungan dengan konsep-konsep, prinsip-prinsip, dan ketrampilan-ketrampilan yang lain.
Adanya hubungan antara konsep-konsep, prinsip-prinsip, dan ketrampilan-ketrampilan itu menyebabkan struktur dari setiap cabang matematika menjadi jelas. Adanya hubungan-hubungan itu juga membantu guru dan pihak-pihak lain (misalnya penyusun kurikulum, penulis buku, dan lain-lain) dalam upaya untuk menyusun program pembelajaran bagi siswa.
Dalam pembelajaran matematika, tugas guru bukan hanya membantu siswa dalam memahami konsep-konsep dan prinsip-prinsip serta memiliki ketrampilan-ketrampilan tertentu, tetapi juga membantu siswa dalam memahami hubungan antara konsep-konsep, prinsip-prinsip, dan ketrampilan-ketrampilan tersebut. Dengan memahami hubungan antara bagian yang satu dengan bagian yang lain dari matematika, pemahaman siswa terhadap struktur dan isi matematika menjadi lebih utuh.
Perlu dijelaskan bahwa keempat dalil tersebut di atas tidak dimaksudkan untuk diterapkan satu per satu seperti di atas. Dalam penerapan (implementasi), dua dalil atau lebih dapat diterapkan secara bersaa dalam proses pembelajaran sesuatu materi matematika tertentu. Hal tersebut bergantung pada karakteristik dari materi atau topik matematika yang dipelajari dan karakteristik dari siswa yang belajar. Misalnya konsep Dalil Pythagoras diperlukan untuk menentukan Tripel Pythagoras.
Guru perlu menjelaskan bagaimana hubungan antara sesuatu yang sedang dijelaskan dengan objek atau rumus lain. Apakah hubungan itu dalam kesamaan rumus yang digunakan, sama-sama dapat digunakan dalam bidang aplikasi atau dalam hal-hal lainnya.
Contoh Proses Belajar Mengajar yang dianjurkan pada Kurikulum 2013, mungkin video berikut dapat membantu kita dalam penerapan kuriulum 2013;