Cara Merasionalkan Penyebut Bentuk Akar Pangkat Tiga Dilengkapi Soal Penerapan



Materi tentang pangkat (eksponen) dan akar sudah diperkenalkan sejak SMP, termasuk bagaimana cara merasionalkan bentuk bilangan pecahan dengan penyebut berbentuk akar. Namun sebagian besar referensi belajar yang digunakan di sekolah hanya sebatas merasionalkan bentuk akar kuadrat. Masih jarang buku yang membahas bagaimana cara merasionalkan bentuk akar pangkat tiga. Padahal, cara merasionalkan bentuk akar pangkat tiga sangat penting sebagai penunjang materi lainnya, misalnya dalam menyelesaikan limit fungsi aljabar yang memuat akar pangkat tiga tanpa menggunkan dalil L'Hopital.

Kita sudah diperkenalkan cara merasionalkan bentuk pecahan dengan penyebut akar kuadrat adalah dengan mengalikan dengan bentuk sekawannya, misalnya $\displaystyle\frac{1}{\sqrt{5}-2}$ dapat kita rasionalkan dengan mengalikannya dengan $\displaystyle\frac{\sqrt{5}+2}{\sqrt{5}+2}$ karena bentuk sekawan dari $\displaystyle \sqrt{5}-2$ adalah $\displaystyle \sqrt{5}+2$. Lalu bagaimana cara merasionalkan bentuk ini $\displaystyle\frac{3}{\sqrt[3]{5}-\sqrt[3]{2}}$?. Jika anda pikir cara merasionalkan bentuk tersebut adalah dengan mengalikannya dengan $\displaystyle\frac{\sqrt[3]{5}+\sqrt[3]{2}}{\sqrt[3]{5}+\sqrt[3]{2}}$ maka anda keliru. Untuk dapat menyelesaikannya mari kita pahami terlebih dahulu mengenai definisi dari bentuk akar sekawan berikut.


Informasi:
Tulisan pada laman ini memuat persamaan matematika yang cukup panjang dan tidak responsive pada media mobile, jika tampilan persamaan matematika di smartphone anda terpotong, silakan buka laman ini dalam mode landscape, Sangat disarankan membuka laman ini via PC/Laptop


Apa Definisi Dari Akar Sekawan?

Bersumber dari Ensiklopedia Matematika yang ditulis oleh ST. Nugroho dan B. Harahap, definisi dari akar sekawan adalah sebagai berikut:
Definisi Akar Sekawan
Dua bentuk akar dikatakan sekawan jika hasil kali kedua bilangan irasional (bentuk akar) adalah bilangan rasional

$\displaystyle\sqrt{a}+\sqrt{b}$ sekawan dengan $\displaystyle\sqrt{a}-\sqrt{b}$ sebab $\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b$


Perhatikan beberapa contoh akar sekawan berikut:


$2-\sqrt{3}$ sekawan dengan $2+\sqrt{3}$ sebab $\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1$


$\sqrt{5}+\sqrt{2}$ sekawan dengan $\sqrt{5}-\sqrt{2}$ sebab $\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)=5-2=3$


$\sqrt{8}$ sekawan dengan$\sqrt{2}$, sebab $\sqrt{8}\times\sqrt{2}=\sqrt{16}=4$



Bentuk Sekawan Akar Pangkat Tiga


Bentuk sekawan dari $\displaystyle\sqrt[3]{a}$ adalah $\displaystyle\sqrt[3]{a^2}$, sebab:

$\begin{align*}\sqrt[3]{a}\times\sqrt[3]{a^2}&=a^{\frac{1}{3}}\times a^{\frac{2}{3}}\\&=a^{\frac{1}{3}+\frac{2}{3}}\\&=a^{\frac{3}{3}}\\&=a^1\\&=a\end{align*}$


Sekarang, bagaimana bentuk akar sekawan dari $\displaystyle\sqrt[3]{a}+\sqrt[3]{b}$?

Bentuk akar sekawan dari bentuk di atas pastinya harus menyebabkan "muncul" pangkat tiga pada kedua suku bentuk akar di atas, bentuk aljabar sebagai landasan yang akan kita gunakan adalah sebagai berikut:

$\begin{align*}x^3-y^3&=(x-y)(x^2+xy+y^2)\\x^3+y^3&=(x+y)(x^2-xy+y^2)\end{align*}$

Contoh, akar sekawan dari $\displaystyle\sqrt[3]{5}-\sqrt[3]{2}$ adalah $\displaystyle\left(\sqrt[3]{5}\right)^2+\sqrt[3]{5}.\sqrt[3]{2}+\left(\sqrt[3]{2}\right)^2$ atau bisa juga ditulis $\displaystyle\sqrt[3]{25}+\sqrt[3]{10}+\sqrt[3]{4}$ sebab:

$\begin{align*}\left(\sqrt[3]{5}-\sqrt[3]{2}\right)\left(\sqrt[3]{25}+\sqrt[3]{10}+\sqrt[3]{4}\right)&=\left(\sqrt[3]{5}\right)^3-\left(\sqrt[3]{2}\right)^3\\&=5-2\\&=3\end{align*}$


Berikut ini bentuk-bentuk akar sekawan akar pangkat tiga:




Bentuk sekawan dari $\displaystyle\sqrt[3]{a}$ adalah $\displaystyle\sqrt[3]{a^2}$


Bentuk sekawan dari $\displaystyle\sqrt[3]{a}-\sqrt[3]{b}$ adalah $\displaystyle\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}$


Bentuk sekawan dari $\displaystyle\sqrt[3]{a}+\sqrt[3]{b}$ adalah $\displaystyle\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}$


Bentuk sekawan dari $\displaystyle a-\sqrt[3]{b}$ adalah $\displaystyle a^2+a\sqrt[3]{b}+\sqrt[3]{b^2}$


 Bentuk sekawan dari $\displaystyle a+\sqrt[3]{b}$ adalah $\displaystyle a^2-a\sqrt[3]{b}+\sqrt[3]{b^2}$


Bentuk sekawan dari $\displaystyle \sqrt[3]{a}-b$ adalah $\displaystyle\sqrt[3]{a^2}+b\sqrt[3]{a}+b^2$


 Bentuk sekawan dari $\displaystyle \sqrt[3]{a}+b$ adalah $\displaystyle\sqrt[3]{a^2}-b\sqrt[3]{a}+b^2$



Merasionalkan Penyebut Akar Pangkat Tiga


Setelah mengetahui bentuk sekawan akar pangkat tiga, sekarang kita akan menggunakan bentuk sekawan tersebut untuk merasionalkan penyebut akar pangkat tiga, perhatikan beberapa contoh di bawah ini:

Contoh 1

Bentuk rasional dari $\displaystyle\frac{9}{2\sqrt[3]{2}}$ adalah ....

Jawab:
Bentuk akar sekawan dari $\sqrt[3]{2}$ adalah $\sqrt[3]{4}$
$\begin{align*}\frac{9}{2\sqrt[3]{2}}\times\frac{\sqrt[3]{4}}{\sqrt[3]{4}}&=\frac{9\sqrt[3]{4}}{2\times 2}\\&=\frac{9}{4}\sqrt[3]{4}\end{align*}$

Contoh 2

Bentuk rasional dari $\displaystyle\frac{5}{\sqrt[3]{7}-\sqrt[3]{2}}$ adalah ....

Jawab:

Bentuk akar sekawan dari $\sqrt[3]{7}-\sqrt[3]{2}$ adalah $\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}$ maka:

$\begin{align*}\frac{5}{\sqrt[3]{7}-\sqrt[3]{2}}\times\frac{\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}}{\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}}&=\frac{5\left(\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\right)}{7-2}\\&=\frac{5\left(\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\right)}{5}\\&=\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\end{align*}$

Contoh 3

Bentuk rasional dari $\displaystyle\frac{\sqrt[3]{2}}{\sqrt[3]{2}+1}$ adalah ....

Jawab:

Bentuk akar sekawan dari $\sqrt[3]{2}+1$ adalah $\sqrt[3]{4}-\sqrt[3]{2}+1$

$\begin{align*}\frac{\sqrt[3]{2}}{\sqrt[3]{2}+1}\times\frac{\sqrt[3]{4}-\sqrt[3]{2}+1}{\sqrt[3]{4}-\sqrt[3]{2}+1}&=\frac{\sqrt[3]{2}\left(\sqrt[3]{4}-\sqrt[3]{2}+1\right)}{2+1}\\&=\frac{\sqrt[3]{8}-\sqrt[3]{4}+\sqrt[3]{2}}{3}\\&=\frac{2-\sqrt[3]{4}+\sqrt[3]{2}}{3}\\&=\frac{1}{3}\left(2-\sqrt[3]{4}+\sqrt[3]{2}\right)\end{align*}$



Contoh Penerapan dalam Menyelesaikan Masalah Limit

Berikut ini contoh soal limit yang melibatkan akar pangkat tiga,

$\displaystyle\lim_{x\to 8}\frac{x-8}{\sqrt[3]{x}-2}=$ ....

Jika kita substitusi langsung $x=8$, maka akan kita peroleh bentuk tak tentu $\displaystyle\frac{0}{0}$, dengan demikin diperlukan manupulasi aljabar untuk menyelesaikannya dengan cara menghilangkan faktor persekutuan pembilang dan penyebut yang menyebabkan nilai $\displaystyle\frac{0}{0}$.

Bentuk akar sekawan dari $\sqrt[3]{x}-2$ adalah $\sqrt[3]{x^2}+2\sqrt[3]{x}+4$, dan $\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)=x-8$ maka:

$\begin{align*}\lim_{x\to 8}\frac{x-8}{\sqrt[3]{x}-2}\times\frac{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}&=\lim_{x\to 8}\frac{(x-8)(\sqrt[3]{x^2}+2\sqrt[3]{x}+4)}{x-8}\\&=\lim_{x\to 8}\sqrt[3]{x^2}+2\sqrt[3]{x}+4\\&=\sqrt[3]{64}+2\sqrt[3]{8}+4\\&=4+4+4\\&=12\end{align*}$

Demikianlah cara merasionalkan penyebut akar pangkat tiga yang dapat saya bahas. 
Semoga bermanfaat

Sumber https://www.m4th-lab.net/

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel